Steroid hormone fluctuations and GABA(A)R plasticity.

نویسندگان

  • Jamie Maguire
  • Istvan Mody
چکیده

Conditions of changing steroid hormone levels are a particularly vulnerable time for the manifestation of neurological disorders, including catamenial epilepsy, premenstrual syndrome (PMS), and postpartum depression. The pathophysiology of these disorders may be related to changes in neurosteroid levels, which can dramatically impact neuronal excitability. Robust changes in neurosteroid levels, such as those that occur following stress, over the ovarian cycle, and throughout pregnancy, profoundly alter GABAA receptor (GABAAR) structure and function and underlie the associated changes in neuronal excitability. A moderate and brief exposure to elevated neurosteroids, such as those that occur over the ovarian cycle and following an acute stressful episode, result in a decrease in GABAAR gamma2 subunit expression and an increase in GABAAR delta subunit expression. These changes are accompanied by a decrease in seizure susceptibility and decreased anxiety-like behavior in mice, demonstrating altered neuronal excitability associated with changes in the receptor composition. More robust changes in steroid hormone levels, such as those that occur throughout pregnancy, result in a decrease in both GABAAR gamma2 and delta subunit expression and are associated with an increase in neuronal excitability evident from the shift in the input-output relationship. Alterations in GABAAR subunit composition may represent a homeostatic mechanism to maintain an ideal level of inhibition in the face of fluctuating neurosteroid levels. Neurosteroids potentiate the effects of GABA on GABAARs, particularly those containing the delta subunit, and reorganization of these receptors may be necessary to prevent sedation and/or anaesthesia in the face of high levels of neurosteroids or to prevent hyperexcitability in the absence of these compounds. Alterations in GABAARs under conditions of altered steroid hormone levels result in measurable changes in neuronal excitability and dysregulation of GABAARs may play a role in steroid hormone-associated neurological disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reciprocal regulation of stress hormones and GABAA receptors

Stress-derived steroid hormones regulate the expression and function of GABA(A) receptors (GABA(A)Rs). Changes in GABA(A)R subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABA(A)R subunit expression, stress ...

متن کامل

Estrous cycle regulation of extrasynaptic δ-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis.

The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABA(A) receptors mediate phasic inhibition in the...

متن کامل

Neurosteroid effects on GABAergic synaptic plasticity in hippocampus.

We have previously reported that short-term (48-72 h) exposure to the GABA-modulatory steroid 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alpha-THP) increases expression of the alpha4 subunit of the GABA(A) receptor (GABAR) in the hippocampus of adult rats. This change in subunit composition was accompanied by altered pharmacology and an increase in general excitability associated with acceleratio...

متن کامل

Interactions between hormones and epilepsy

There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly procon...

متن کامل

Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain.

Whereas adult sex differences in brain morphology and behavior result from developmental exposure to steroid hormones, the mechanism by which steroids differentiate the brain is unknown. Studies to date have described subtle sex differences in levels of proteins and neurotransmitters during brain development, but these have lacked explanatory power for the profound sex differences induced by st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Psychoneuroendocrinology

دوره 34 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2009